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ABSTRACT  

 

Nanostructured metallic multilayers (NMMs) are well-known for their high strength in 

smaller bilayer thicknesses. Six Al/Ti (NMM) with different individual layer thickness were tested 

for their mechanical hardness using a nanoindentation tool. Individual layer thicknesses were 

chosen carefully to cover the whole confined layer slip (CLS) model. Nano-hardness had a reverse 

relation with the square root of individual layer thickness and reached a steady state at ~ 5 nm 

bilayer thickness. Decreasing the layer bilayer thickness from ~ 104 nm to ~ 5 nm, improved the 

mechanical hardness up to ~ 101%.  Residual stresses were measured using grazing incident X-

ray diffraction (GIXRD). Effect of residual stress on atomic structure and dislocation propagation 

was then investigated by comparing the amount and type of stresses in both aluminum and titanium 

phases. Based on the gathered data from GIXRD scans tensile stress in Ti phases, and compressive 

stress in Al would increase the overall coherency of structure. 

Wear rate in coatings is highly dependent on design and architect of the structure. NMM 

coatings are known to have much better wear resistance compare to their monolithic constituent 

phases by introducing a reciprocal architect. In current study wear rate of two Al/Ti NMMs with 

individual layer thicknesses of ~ 2.5 nm and ~ 30 nm were examined under normal loads of 30 

µN, 60 µN, and 93 µN. Wears strokes were performed in various cycles of 1, 2, 3, 4 5 and 10. 

Wear rates were then calculated by comparing the 3D imaging of sample topology before and after 

tests. Nano-hardness of samples was measured pre and post each cycle of wear using a 

nanoindentation tool. The microstructure of samples below the worn surface was then 
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characterized using scanning electron microscopy (SEM), transmission electron microscopy 

(TEM), atomic force microscopy (AFM), focus ion beam (FIB) and an optical profilometer. 

Orientation mapping was performed to analyze the microstructure of layers beneath the nano 

indents. TEM imaging from the cross section of worn samples indicated severely plastically 

deformed layer (SPDL) below the worn surface. Shear bands and twins are visible after wear and 

below the worn surface. Decreasing the layer thickness from 30 nm to 2.5 nm resulted in ~ 5 time’s 

better wear resistance. Nanowear caused surface hardening which consequently increased nano 

hardness up to ~ 30% in the sample with 2.5 nm individual layer thickness.  

Increasing the interfaces density of NMMs will significantly improve the corrosion 

resistance of coating. Reciprocal layers and consequently interfaces will block the path of 

aggressive content toward the substrate. Corrosion rate evolution of Al/Ti multilayers was 

investigated through DC corrosion potentiodynamic test. Results seem to be very promising and 

demonstrate up to 30 times better corrosion resistance compared to conventional sputtered 

monolithic aluminum. Corrosion started in the form of pitting and then transformed to the localized 

galvanic corrosion. Decreasing the bilayer thickness from ~ 10.4 nm to ~ 5 nm will decrease the 

corrosion current density (icorr) of ~ 5.42 × 10-7 (A/cm2) to ~ 6.11 × 10-10 (A/cm2). No sign of 

corrosion has been seen in the sample with ~ 2.5 nm individual layer thickness. Further AFM and 

TEM analysis from surface and cross section of NMMs indicate that a more coherent layer by 

layer structure improves the corrosion rate. Interfaces have a significant role in blocking the pores 

and imperfections inside coating.  
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CHAPTER 1: AN INTRODUCTION ON NMMS  

 

1.1 Background 

The concept of creating a composite material with superior mechanical, physical, and 

corrosion properties than its constituent materials is as old as the history [1]. Concrete is a good 

example; singular cement and aggregates have limited strength under compression but mixing 

appropriate portion of water with them can significantly improve the final product strength [2]. 

This concept of mixing component to favorably manipulate their properties and characteristics is 

not limited to bulk materials, it can also come from micro and nanoscale modifications of atoms 

and grains of materials [2].  

Nanostructured metallic multilayers (NMMs) are examples of such nanoscale modified 

materials which are wildly used in numerous fields as coatings for their excellent corrosion, scratch 

and wear resistance [3-10].  An important factor which contributes to such good property 

enhancement is that atoms are placed next to each other in an organized way to react to external 

stresses [11]. Figuring out that how different layering materials with different structures respond 

to mechanical and chemical tests at micron and sub-micron scales will facilitate the understanding 

of their behaviors at the macroscale. 

It has been shown that metallic composite multilayers demonstrate better mechanical and 

chemical properties compared to their monolithic ingredients [6, 12, 13]. For example, Clemens 

et al. [8] showed that decreasing the individual layer thickness from 50 nm to 2.5 nm will increase 

the hardness of Al/Nb NMM from ~ 3.1 GPa to ~ 4.5 GPa. Although there have been several 
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studies reporting the mechanical properties of NMMs composed of alternating face centered cubic 

(fcc/fcc) [14-16], body centered cubic / face centered cubic (bcc/fcc) [17] and hexagonal close 

packing (hcp/hcp) structures [18], limited research has been performed on fcc/hcp NMMs [19, 20]. 

In this thesis, we chose Al/Ti as a model system to study the structure-sensitive mechanical, 

tribological, and corrosion properties of fcc/hcp NMMs. The reasons for choosing aluminum and 

titanium as the ingredient phases in this research can be summarized as the following: 

 Relatively low density of aluminum (~2.7 g/cm3) and titanium (~ 4.5 g/cm3), which results 

in an overall light composite. As a comparison, titanium which is the stiffer phase in Al/Ti 

multilayer specimen, has a density as low as ~1/5 of tungsten ( ρ ~ 19.25 g/cm3 ) in Cu/W 

, ~ 1/2 of nickel (ρ ~ 8.9 g/cm3) in Cu/Ni  and ~ 0.7 of vanadium (~6.11 g/cm3 ) in V/Ag 

NMMs. It is worth mentioning that aluminum, the softer component of Al/Ti NMM, also 

has significantly smaller density compared to other well-studied NMMs [14-17, 21-24], 

with the exception of magnesium in Mg/Ti NMM [18]. 

 Both single phase aluminum and titanium exhibits very good corrosion resistance in their 

bulk form. In addition, they exhibit very similar electrode potential (-1.628 V for Ti2+ and 

-1.662 V for Al3+), which is likely to minimize galvanic coupling in the Al/Ti multilayered 

structure.  

 Finally there has been very limited research on Al/Ti NMMs, many of which primarily 

focus on describing only phase change [25] and structural [26] or mechanical aspects [27] 

of the composite while a systematic study is lacking.  
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1.2 Deformation Mechanisms of NMMs 

The layer by layer structure of NMMs can significantly improve mechanical properties by 

controlling the type and amount of dislocations through interface barrier strength [21, 22]. Another 

important parameter along with interface that also affects the type of dislocations inside layers is 

the individual layer thickness of NMM [21]. Different types of dislocation can occur under external 

stresses based on different individual layer thickness. Basically individual layer thickness controls 

the population of dislocations and their propagation direction while the interface controls their path 

through adjacent layers. As an example, when an individual layer thickness of an NMM is thick 

enough to contain all dislocation from external stress, then material mechanical response is very 

similar to monolithic sample. Decreasing the individual layer thickness to a few nanometers will 

decrease the possibility of multiple chain dislocations by adding the interface barriers strength 

(IBS) which can block dislocations through adjacent layer or redirect them through interface of 

adjacent layers. It is generally accepted [22, 28, 29] that three different deformation modes may 

operate depending on the layer thickness h.  When h is at submicron length scales, dislocations 

pile up against the interfaces and the Hall-Petch hardening model applies, where the strength 

increases with decreasing layer thickness as 𝐻 ∝ ℎ−1/2. Hall-petch model is usually defined as: 

H = H0 + kh-1/2                                                         (1) 

where H is the material hardness, H0 is the intercept point with y axis on H vs. h-1/2 plot. k is Hall-

Petch slope obtained from fitting the linear section of data points. k can also be calculated as: 

            𝑘 = √
𝜏∗µ𝑏

𝜋(1−𝜐)
                                   (2) 

where τ∗ is the interface barrier strength, µ is the shear module, b is the burgers vector, and υ is the 

Poisson’s ratio. When ℎ is from a few to a few tens of nanometers, there is insufficient spacing 

between the interfaces for dislocation pile-up; thus, Hall-Petch hardening breaks down. The 
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deformation mechanism now involves the motion of single dislocation bowing between the 

interfaces, where the confined layer slip (CLS) mechanism operates. In this regime, the yield 

strength is found to increase with decreasing layer thickness as 𝜎 ∝ ln(ℎ) /ℎ [22]. The stress 

reaches a maximum value at approximately ℎ ≈ 4 nm. After that, deformation mechanisms of 

NMMs become insensitive to layer thickness but highly sensitive to the structure and property of 

interfaces, as they represent a large volume fraction with decreasing layer thicknesses. For NNMs 

with coherent interfaces, such as Cu/Ni multilayers, strength depends on the coherency strains, 

and the maximum flow stress is equal to the coherency stress. For NNMs with incoherent 

interfaces, the deformation mode is associated with the transmission of single glide dislocation 

across interfaces [30]. While Hall-Petch and CLS models cannot predict the strength at smaller 

layer thickness, Misra et al. [22] suggested a modified CLS model which can predict the shear 

stress required to cause plastic deformation through a single dislocation. Fig 1.1 indicates three 

different typical dislocation regimes for NMM structures. Dislocation happens inside the 

softer/ductile layer and then propagates to the interfaces of adjacent layers from sides. The CLS 

stress is estimated as: 

4
ln

8 1
cls

b h f C
M

h b h

  


  

   
         

, and 
(1 )

b
C







                         (3) 

where M is the Taylor factor (~ 3.1), μ is the shear modulus, b is the Burgers vector, hʹ is the layer 

thickness measured parallel to the slip plane (~ h × (
1

cos30
)), f is the interface stress which has a 

typical value between 2 - 3 [J.m-2] [18]. The core cut-off parameter α, and the spacing of the 

interface dislocation array λ, are two unknown parameters which can be found by fitting the 

experimental results. Misra et al. [22] suggested that using the H-P slope, k, it is possible to find 

maximum interface barrier strength (IBS) with following equation for NMFs: 
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                                                     σIBS =3.06 τ* .                                                                                         (4) 

Interface crossing stress or interface barrier strength (𝜎𝐼𝐵𝑆) is in fact the ultimate required stress 

for occurrence of any types of dislocations in NMMs. In other words all other types of dislocation 

including pile ups and hairpins (through CLS model) will occur at smaller stresses. Although CLS 

model is a good estimation of material strength, it however overlooks some important factors 

including elastic anisotropy and residual stress in the layers [22].  

One of the important parameters which has proven to affect overall strength of NMM 

specimens but is usually overlooked is residual stress. Effect of residual stress on some types of 

multilayers with a few to dozens of layers had been previously studied [31-33].  These studies 

indicate a direct relationship between the amounts of compressive residual stress in deposited thin 

films and final material strength. It is possible to measure the amount of residual stress in crystal 

structure by XRD scan of specimen surface in various Ψ angles. Ψ is the angle between incident-

diffracted bisector with the normal of sample surface, where Ψ rotation plane is also perpendicular 

to the normal of sample surface. It is possible to estimate the residual stress σ of thin films using 

several XRD scans through following equation: 

          σ = (
dΨ – d0

d0
) × 

𝐸

1+𝜐
 × 

1

sin2 𝛹
                                                   (5) 

where d0 is the lattice parameter at Ψ = 0 , dΨ is the measured d spacing when sample is tilted at Ψ, 

E is elastic modulus, and υ is the Poisson’s ratio.  

1.3 Nanowear Behavior of NMMs 

Wear resistance is a system’s response rather than a material property [34]. Wear rate is 

usually high at the beginning of the wear process and then reaches a steady state [34]. Wear 

mechanism can be categorized in different types including mechanical, chemical and thermal wear. 

Mechanical wear, which is the focus of this study, includes abrasive, adhesive and fatigue wear. 
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The parameters which can affect wear rate are numerous: environment, temperature [35], humidity 

[36], and sliding velocity, just to name a few. Thousands of studies on wear properties of material 

have been done and several definitions and theories have been proposed to determine wear rate. 

One of the most well-known methods was proposed by Archard [37] defining the wear rate (w) 

as: 

w = K × 
𝐿

𝐻
,                                                                        (6) 

where K is the wear coefficient, L is the normal load, and H is the material hardness. Archard’s 

theory thus predicts a linear relationship between normal load and wear rate, as shown in Fig.1.2.  

Based on the type of wear, material properties of the region below wear surface can change and 

structure can deform. This deformation can be seen in the form of shear bands, twins, voids etc. 

Due to their excellent mechanical properties, NMMs often exhibit exceptional wear resistance 

[38]. The coating architecture, number of layers and layer thickness of NMMs can significantly 

affect wear rate of the structure [39]. One study [40] shows that a bilayer of TiC and WC/C  coating 

can reduce the wear rate of Ti-6Al-4V up to 94%. Yang et al. [39] showed that in Al-N/Cr-N 

NMMs by switching the top layers from Al-N to Cr-N friction coefficient and wear rate of coating 

will be increased significantly, which shows how wear is dependent on design and architecture 

rather than the material. Yonekura et al. [41] indicated that multilayer structure will improve both 

wear and fatigue resistance but increasing the individual layer thickness will reduce the 

improvement rate. It has been proven that wear rate is strongly related to material overall strength 

[40]. Generally a sample with higher hardness to elastic module ratio (H/E) will demonstrate better 

wear rate. Some of the typical deformations below the worn surface of NMMs include compression 

of layers, crack propagation along columnar boundaries [42], and shear bands and twins formation 

[43].  
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1.4 Corrosion Resistance of NMMs 

Corrosion resistance of multilayers has been found to be significantly higher than their 

constituent monolithic specimens in several studies [5, 9, 44]. In passive metals such as aluminum, 

good corrosion resistance can be achieved by creating dense microstructure with low porosity [3]. 

If a multilayer structure facilitates such a structure with appropriate chemical composition [45], 

then it can delay the corrosion process. Hovsepian et al. [45] indicates that CrN/NbN multilayer 

shows significantly better corrosion protection compared to its monolithic constituent because of 

less interconnecting pores and defects through the coating. In the case of Al/Ti NMMs, Xie et al. 

[44] demonstrated that it is possible to decrease current density of corrosion by two orders of 

magnitude in an NMM with less than 50 bilayers. This improvement in corrosion rate was made 

possible by keeping the titanium layers thickness at 50 nm and decreasing the aluminum thickness 

from 1265 nm to 200 nm.  On another study of Al/Ti multilayer coating, Charrier et al. [4] 

concluded that corrosion resistance is improved only if the titanium is the external layer of the 

coating. In addition, these authors pointed out that titanium cannot improve the corrosion rate in 

monolithic form and aluminum will play sacrificial protection role.  

While several groups [46, 47] have attempted to simulate the oxidation and corrosion 

process of nanostructures through molecular dynamics (MD), corrosion rate can be easily 

measured through a controlled potential polarization test. Figure 1.3 indicates the current vs. 

voltage polarization curve after a typical potentiodynamic test. If an anodic reaction metal X is 

simplified as 

  X = Xn+ +ne-,                                                               (7) 

the current density and corroded mass of the specimen are related to each other through Faradaic 

conversion formula as 
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               W = 
𝐼×𝑡×𝑀

𝑛×𝐹
                                                                    (8) 

 W is the mass lost or gained, M is the atomic mass of metal,  n is the valance of metal, , F=96485 

[coulombs/mole]  is the Faraday’s constant, and t is the length of time that current was on. I or 

current in Faradays equation has the unit of Amps, which can be converted to current density by 

dividing current over the samples cross section area.  

The goals of this research are to synthesis and characterize Al/Ti NMMs, establish a 

relationship between the microstructure evolutions, mechanical, tribological, and corrosion 

responses as a function of layer thickness. In the current work, various Al/Ti NMMs with 

individual layer thickness from 2.5 to 52 nm are characterized and studied. Mechanical properties 

along with residual stress of Al/Ti NMMs is analyzed and discussed in Chapter 2; nano wear and 

its effect on microstructure evolution of NMM is studied in Chapter 3;  and finally corrosion 

resistance of different Al/Ti NMMs has been studied in Chapter 4. 
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1.6 Figures 

 

Figure 1.1 Dislocations mechanism through different length scale individual layer thicknesses 

[22]. 
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Figure 1.2 Wear rate increase with increase of normal load with a steady slope based on the 

Archard’s theory [37]. 
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Figure 1.3 Potentiodynamic polarization curve which is generated after the test and indicates 

current density and open circuit voltage [3]. 
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CHAPTER 2: MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AL/TI 

NMMS 

 

2.1 Introduction  

Nanostructured metallic multilayers (NMMs) represent a new class of engineering 

materials that exhibit excellent physical, mechanical, and tribological properties due to the nano-

scale layered structure. They are widely used in x-ray optics, thin film magnets, wear-resistant 

coatings, microelectromechanical devices, and as radiation damage tolerant materials. Extensive 

research has been carried out to study the relationship between the microstructure and mechanical 

properties of NMMs. In particular, it was discovered that near-theoretical strength can be achieved 

at extremely small layer thicknesses [1]. The deformation behavior and strengthening mechanism 

of NMMs are sensitive to layer thickness and interface structure. It is generally accepted that three 

different deformation modes may operate, depending on the layer thickness ℎ [1-3]. When ℎ is at 

submicron length scales, dislocations pile up against the interfaces and the Hall-Petch hardening 

model applies, where the strength increases with decreasing layer thickness as 𝜎 ∝  ℎ−1/2. When 

ℎ is from a few to a few tens of nanometers, there is insufficient spacing between the interfaces 

for dislocation pile-up; thus, Hall-Petch hardening breaks down. The deformation mechanism now 

involves the motion of single dislocation bowing between the interfaces, where the confined layer 

slip (CLS) mechanism operates. In this regime, the yield strength is found to increase with 

decreasing layer thickness as 𝜎 ∝ ln(ℎ) /ℎ [1]. The stress reaches a maximum value at 

approximately ℎ ≈ 5 nm. After that, deformation mechanisms of NMMs become insensitive to 
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layer thickness but highly sensitive to the structure and property of interfaces, as they represent a 

large volume fraction with decreasing layer thicknesses. For NNMs with coherent interfaces, such 

as Cu/Ni multilayers, strength depends on the coherency strains, and the maximum flow stress is 

equal to the coherency stress. For NNMs with incoherent interfaces, the deformation mode is 

associated with the transmission of single glide dislocation across interfaces [4].  

Extensive previous research highlights the fact that novel deformation physics control 

plasticity in the NMMs. However, the vast majority of these studies focus on multilayers consisting 

of face-centered cubic (fcc) and body-centered cubic (bcc) structures, while those of fcc/hcp 

(hexagonal close-packed) multilayers remain limited. In this study, we chose Al/Ti as a model 

system to study the structure-sensitive mechanical and tribological properties of fcc/hcp NMMs. 

Al/Ti NMMs have been studied previously for their self-propagating reactions [5], but there has 

been very limited prior research on the mechanical and tribological behavior of this system [6]. 

Due to the low densities of the constituent materials (ρAl = 2.7 g/cm3 and ρTi = 4.5 g/cm3), the Al/Ti 

NMMs, with nominal density of ~ 3.6 g/cm3, are also promising novel lightweight high strength 

materials. In the current work, Al/Ti NMMs were synthesized with six representative layer 

thicknesses, 2.5 nm, 5.2 nm, 11.4 nm, 30 nm, 36 nm and 52 nm, to reveal the structural evolution 

when different deformation mechanism operates. The goals of the current work are to (1) 

synthesize and characterize Al/Ti NMMs at various layer thicknesses, (2) investigate the 

mechanical properties of Al/Ti NMMs, and (3) establish the relationship between the 

microstructure evolution and mechanical responses as a function of layer thickness.  

2.2 Experimental Procedure 

After defining the principal deposition parameters and physical properties of specimens, 

six Al/Ti NMMs were prepared using modified SFI cluster sputter tool. Earton 8210 power supply 
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with direct current was used to deposit multilayers on Si (100) substrate. S-Gun toroidal Al target 

with 99.999% purity and 9” diameter along with the S-gun toroidal Ti target with 99.999% purity 

and 3” diameter were used in two sequential chambers. Argon gas flow maintained the chamber 

pressure at ~ 5 mTorr. The observed pressure for Ti and Al deposition was ~ 5.9 mTorr and 4.2 

mTorr respectively. Post-deposition NMMs were covered using a thin positive photoresist to act 

as a protective layer during dicing and through storage. Specimen wafers were then diced in half. 

The first half of specimens were then used for nondestructive grazing incident X-ray diffraction 

(GIXRD) tests and the second half was diced into multiple 1 cm × 1 cm pieces for destructive tests 

including wear, indentation and corrosion. Figure 2.1 indicates a schematic of NMM, photos of 

the sputtering tool and deposited NMMs. Primary GIXRD was performed on all six samples using 

PANAlytical X’Pert PRO diffractometer (Cu Kα, 154.06 pm) from Philips with a voltage of 45 

kV and 40 mA current. The main reason for not using typical XRD method (Bragg-Brentano 

configuration) was to keep the substrate peak intensity proportionally low compared to constituent 

phases. Also considering that some of the samples have less than 1 µm in overall thickness, GI-

XRD turned out to be a better choice over B-B configuration. Incident beam optic was chosen to 

be Cu mirror, and the diffracted beam receiver was parallel plate collimator (PPL). Divergence slit 

was 
1

8
 ° fixed slit and depending on the size of the sample, a mask of 10 mm to 20 mm was used. 

Step size was set to be at most 0.01° and time per step was 10 seconds. The grazing incident was 

chosen to be 3° for all samples and scan span was from 2θ=32° to 2θ=85°.    

For the purpose of measuring residual stress in NMMs several sets of GIXRD were 

performed on all six samples with a step size in the range of 0.01 º to 0.001 º. Time per step of 

scans was in the range of 15 to 70 seconds depending on total thickness and ψ or φ tilt angles. 

Scans were performed in at least 7 different ψ angles from a combination of: 0°, ±10, ± 15°, ± 30° 
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and ± 35°. Several different methods were examined including conventional Sin2 ψ method ( in 

both psi and chi angles), Perry method [7] based on Seemann-Bohlin X-ray diffraction and Marion-

Cohen method [8] were evaluated. Finally Sin2ψ method was chosen for measuring the stresses in 

non-textured specimens and Marion-Cohen method was used when the specimen was highly 

textured. Because almost half of the samples demonstrated textured behavior it was necessary to 

scan the whole peak span for post processing of integrated intensities. XRD patterns were then 

analyzed using OriginPro, Highscore Plus and XʹPert view software. Scanning electron 

microscopy (SEM) was performed using Hitachi SU-70 with a maximum acceleration voltage of 

30 kV for a pre-evaluation of surface smoothness and recording grain size of top aluminum layers 

before AFM test. Arithmetic surface roughness (Ra) was measured and mapped using DI AFM 

tool and Nanoscope software. For each sample, at least, three different surface scans with a 

different scan size of 2 µm, 5 µm and 10 µm were performed. The scan rate was kept as low as 0.5 

Hz and sample line was set to be at maximum possible 512 lines to produce a smooth image. Data 

was gathered in two different formats of Height and Phase. It is common to keep arithmetic surface 

roughness (Ra) less than 5% of maximum penetration depth in indentations to produce valid 

nanoindentation results. These values of surface roughness along with the 1/10s method [9] were 

then implemented during nanoindentation tests.  

Nanoindentation was performed using Hysitron Ti900 Triboindenter equipped with a 

standard Berkovich tip with a curvature radius of ~150 nm to determine the reduced elastic module 

(Er) and hardness (H). Before nanoindentation, the machine was calibrated using standard fused 

quartz for machine compliance and tip area function. After calibration, a hardness of ~ 9.5 ± 0.15 

GPa (expected to be 9.5 GPa with 10 % allowable deviation) and reduced young’s module of ~ 

69.57 ± 0.54 GPa (supposed to be 69.6 GPa with 5 % allowable deviation) was found for the fuse 



www.manaraa.com

19 

 

quartz. A standard trapezoidal loading pattern was used for all the specimens with loading, hold 

and unloading times of 3, 2 and 3 seconds respectively. 20 indents were performed in a range of 

500 µN – 10 mN. The target loads were then chosen based on piezo displacement under a specific 

load for each NMM. The final ranges of loads from 1 mN to 3 mN were varied based on sample 

thickness and penetration depth of indenter tip into sample. After selecting optimal loads, at least, 

20 indents were performed on each NMM with a pre-selected optimal load while there was, at 

least, 15 μm spacing between indents to prevent any interactions. Finally, 15+ of initial indents 

were chosen based on the loading vs. time profiles to be considered for the purpose of measuring 

hardness and young’s module of the specimen. Nanoindentation raw data analysis was obtained 

using Triboscan software which analyzes nanoindentation data based on Oliver and Pharr method 

[10]. Several calibration including tip area function, air calibration and machine compliance before 

and after the experiments were performed on standard fused quartz to make sure that the obtained 

results are as much as possible accurate. Final maximum penetration depth for each sample was 

kept less than 15% of the total film thickness.  

Cross-sectional transmission electron microscopy (TEM) samples were prepared following 

the standard lift-out procedure in a FEI Quanta dual beam microscope. Wide range of currents 

from 30 pA to 3 µA for ion beam were used depending on the purpose of milling and amount of 

protection layers over the coatings. If the purpose of milling was only measuring the overall 

thickness then only platinum (Pt) was used on top of NMM layers. For the purpose of TEM cross 

section lift-out before ion beam deposition, there was, at least, one more protection layer deposited 

using an electron beam or an overall thin layer of carbon deposition over a large surface around 

the target location. Initial deposition using E-beam produced a thickness up to ~100 nm. E-beam 

Pt deposition was performed by using selective area scan with a low beam current (as low as 50 
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pA) and high-speed scan rate (up to 100 ns). Standard lift-out procedure was then continued by 

depositing ~1.5 µm - 3 µm of Pt using ion beam over the targeted region. After depositing 

protective layers, milling of top and bottom sections of target region was started using ion beam 

currents of 5 µA, 3 µA and 1 µA respectively until the target cross section thickness reaches ~500 

nm. Undercutting was then performed by tilting the sample and milling bottom and right side of it 

using relatively low ion beam currents to prevent damage to the unprotected cross section. Fig. 2.2 

demonstrates different steps of sample preparation using focused ion beam (FIB) for the purpose 

of TEM imaging and analysis. 

2.3 Results and Discussion 

2.3.1 XRD Results  

GIXRD patterns are shown in Fig. 2.3 for sample A through sample F with the peak 

annotations. Highest peak intensities belong to Si (311) which comes from the silicon substrates. 

Although a relatively low angle of the grazing incident was chosen (3°) substrates peaks presence 

were inevitable in XRD patterns. Decreasing the grazing incident to overcome the mentioned issue 

would also reduce other peaks intensity. By decreasing the individual layer thickness through 

different NMMs, two different changes were noticed in GIXRD patterns: (1) peak intensity is 

declining while the time per step is the same for all samples; (2) peak broadening is visible while 

the individual layer thickness is decreasing. The decrease of intensity with individual layer 

thickness was reported previously [11, 12] in different metallic multilayers with small individual 

(and overall) thicknesses and peak broadening is a sign of smaller crystal size in samples with 

smaller individual layer thickness [13]. GIXRD results indicate the formation of aluminum and 

titanium phases in all NMMs as represented by the superposition of Al (111)/Ti (00.2) at 2θ ~ 

38.5°, Al (220) at 2θ ~ 65.1° and Ti (311) at 2θ ~ 70.1°.  
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2.3.2 Surface Morphology Characterization Using SEM and AFM 

SEM images of as-deposited samples are shown in Fig. 2.4. SEM images indicate nodules 

with a size in the range of 150 nm - 450 nm in diameter. Because of low resolution in high 

magnifications it’s hard to report exact size of grain on the surface of specimens based on SEM 

images. For more accurate analysis atomic force microscopy (AFM) was implemented to scan all 

NMMs and monolithic sample surfaces. AFM scan indicated an increasing trend for surface 

roughness and grain size from sample A to F. Figure 2.5 shows the difference in surface roughness 

of specimens by comparing AFM scans while keeping the scan scale of 5 µm for all samples. Fig. 

2.6 compares the arithmetic surface roughness (Ra) and grain size of all NMM and monolithic 

samples, each data point was extracted from an average of 100 measurements using Image J 

software over AFM phase images. While all the samples were deposited with the similar physical 

condition and rate of deposition, monolithic aluminum shows significantly higher grain size (more 

than three times) compared to monolithic titanium. Similar behavior was also observed for the 

surface roughness c. On the other hand multilayer structures in NMMs seem to be decreasing both 

the grain size and surface roughness when the individual layer thickness is less than 30 nm. Similar 

behavior has been observed before in Al/Cr NMM coatings [14]. Based on previous works [15-

17], it was concluded that the presence of titanium in Al/Ti NMMs will limit the size of aluminum 

columnar by interrupting their growth through multilayer structure [18].  

2.3.3 TEM Analysis  

TEM images from NMMs cross-sections reveal the total and individual layer thickness 

along with the columnar grain size of specimens.  On thicker NMMs a well-established layer by 

layer structure with clear interfaces is visible but decreasing the bilayer thickness will cause wavy 

behavior in interfaces and especially in columnar grain boundaries. Sample A and sample D with 
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individual layer thickness of 2.5 nm and 30 nm respectively were chosen for more detailed 

analysis. Fig. 2.7 indicates the TEM image from the cross section of samples A and D, where the 

titanium and aluminum layers corresponds to the dark and bright layers respectively. Furthermore 

analysis using Gatan Digital micrographs over the cross-section images indicate the in-plane grain 

size are in good agreement with the AFM results reported in the previous section.  

2.3.4 Nanoindentation Results 

Based on the overall thickness of specimen an acceptable range of penetration [9] was 

defined for each NMM to prevent any substrate effects during nanoindentation. Table 2.1 indicates 

the physical and mechanical properties of as-deposited specimens based on TEM, SEM and 

nanoindentation results. Nano indentation hardness (H) versus the inverse of individual layer 

thickness (h-1/2) of Al/Ti NMMs are plotted in Fig. 2.8 along with several other NMM structures 

[19-22]. Almost all of other NMMs presented in Fig. 2.8 contain aluminum or titanium as a phase 

in their multilayer structure. Except for Al/TiN which has a ceramic structure experimental results 

from the current study over Al/Ti NMMs demonstrate a much better mechanical hardness. The 

linear section of data pints (indicated with red trend line) represents the NMMs with thicker 

bilayers. This section of data points follow the Hall-Petch model with k ~ 15.23 GPa (nm)1/2 and 

H0 ~ 0.32 GPa. As predicated before [1], it however overestimates other NMMs hardness with 

smaller bilayers. As suggested by prior studies [12, 19, 23, 24], deformation mechanism of NMMS 

with individual layer thickness in the range of 35 nm –50nm for switches from Hall-Petch to CLS. 

Decreasing the individual layer thickness in NMMs structure to less than 50 nm will increase the 

structure strength. At these range of layer thicknesses, the strength of NMM can be estimated from 

the CLS model as: 
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where M is the Taylor factor, υ is the Poisson’s ratio, µ is the shear modulus, b is the Burgers 

vector , and hʹ = h/sin (φ) where φ is the angle between the interface and slip plane. ƒ, α and λ are 

interface stress, core cut-off parameter and interfaces spacing respectively and can be found 

through curve fitting the experimental data. In the current work, the following values were used:  

M = 3.1, υ = 0.32, µ = 44 GPa and b = 0.17 nm. Material strength was then estimated by using 

equantion (1) and fitting the experimental data. Fitting results show a very consistent match 

between experimental results from nanoindentation and theoretical calculations based on CLS 

model, with fitting parameters in the pre-defined ranges [22]. NMMs hardness was then achieved 

by multiplying Tabor factor and flow stress (σ). Figure 2.9 demonstrates the experimental 

nanoindentation hardness along with the theoretical predictions based on CLS model for Al/Ti 

NMMs. Experimental results indicate that the maximum strength was achieved in specimen A 

with a hardness of ~ 4.94 GPa, which is comparable to the hardness of monolithic titanium 

although half of the NMM is made from soft aluminum phase.   Thus the nanoindentation results 

indicate the formation of lightweight Al/Ti NMMs with exceptional mechanical properties 

achieved by tailoring the individual layer thickness.  

2.3.5 Residual Stress Measurement  

The residual stress in NMM originates from the difference in thermal expansion 

coefficients between the film and substrate or from the lattice misfit between alternating layers 

[25]. Residual stress was measured in two constituent phases of aluminum and titanium separately 

using GI-XRD scans. As indicated by prior studies [26-28] aluminum and titanium layers have a 

preferred growth direction in <111> and <00.2> respectively. TEM analysis along with XRD 

results confirm the growth direction from previous studies. Fig. 2.3 indicates the XRD results from 

all six NMMs. Peaks scattered from Ti (00.2) and Al (111) planes have a superposition at ~ 38.5°, 
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which makes it impossible to distinguish them. So determining the residual stress based on the 

shift of peak at 38.5° is not possible. Thus in the current study, residual stresses were calculated 

from the the Al (220) and Ti (01.3) peaks.  

Stress measurement procedure for Ti phase was based on Ti (01.3) peaks shift and 

calculations indicate a uniform positive (tensile) stress for titanium phase in all six NMMs. 

Monolithic Ti specimen was also tested and demonstrated the same type of (tensile) stress. Tensile 

stress for Ti phase is in agreement with prior study [29] on sputtered titanium deposited at the same 

pressure (~ 5.9 mTorr) and deposition rate. In fact achieved residual stress (~ 180 MPa) for 

monolithic titanium film with ~ 1.2 µm thickness is comparable to the literature report (~ 210 

MPa) for a ~ 1 µm film of sputtered titanium. The decrease of residual stress with an increase of 

thickness is as expected due to increased relaxation of the thin film. It is expected that residual 

stress ultimately becomes independent of layer thickness at larger layer thickness [30]. 

 Sputtered aluminum is expected to have an increasing compressive stress while its layer 

thickness is increasing from a few nanometer to tens of nanometer [31]. Such behavior however 

was not observed here. Instead, by decreasing the bilayer size, the compressive stress in Al 

increases. The higher amount of compressive stress of Al phase in smaller bilayer thicknesses is 

due to the compression by denser Ti particles during deposition. This behavior is similar to what 

happens during shot peening and has been reported for the aluminum phase in Al/SiC multilayers 

[32]. It is common in low-pressure deposition of multilayers with only a few nanometer bilayer 

thickness.  

The overall residual stress of NMM films with two phases of X and Y can be determined 

through the following equation: 
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                                      𝜎𝑁𝑀𝑀 = 𝜎 𝑝ℎ𝑎𝑠𝑒 𝑋 + 𝜎𝑝ℎ𝑎𝑠𝑒 𝑌 +  𝜎𝐶𝑜ℎ 𝑋 − 𝜎𝐶𝑜ℎ 𝑌                                    (2) 

where 𝜎 𝑝ℎ𝑎𝑠𝑒 𝑋 and 𝜎𝑝ℎ𝑎𝑠𝑒 𝑌 represent the residual stress in X and Y phase respectively measured 

from XRD scans, and 𝜎𝐶𝑜ℎ 𝑋 and  𝜎𝐶𝑜ℎ 𝑌 are the coherency stress of the noted phases. The 

coherency stress in multilayers with equal layer thicknesses have the same magnitude [33] so they 

will cancel out each other and as a result, the final film stress will be an average of residual stresses 

of the two phases. The overall film residual stresses are indicated by green columns in Fig. 2.10, 

which reaches a maximum value of ~ 1.34 GPa at an individual layer thickness of 5.2 nm.  

 Multilayer structure will change the expected mechanical properties, typically attributed 

to residual stress in both Al and Ti phases. As an example, more positive (or tensile) residual stress 

in monolithic Ti reduces the overall strength of coating [34] and in monolithic aluminum a more 

compressive stress will increase the strength of specimen [35]. As it was indicated, this is not the 

case for Al/Ti multilayers. Based on nanoindentation and XRD tests in examined NMMs, overall 

strength is constantly increasing while the tensile stress in the coating is increasing. The increase 

of tensile stress with a decrease of bilayer size has also been reported before [33, 36]. For gold 

layers in Au/Ni NMMs, when the individual layer thickness is ~ 9 �̇�, residual stress approaches to 

~ 3.9 GPa, which is significantly higher than the yield stress of bulk Au [37]. Same high stress has 

also been observed for tungsten in W/Cu multilayer with a maximum stress of 6.4 GPa at 4.2 nm 

thick layers of W [38]. In smaller bilayers effect of interfaces becomes more important. It is 

important to know how the interface acts to decrease or increase the overall residual stress. It was 

indicated by Hull that mismatch strains are significantly dependent on the misfit dislocation at 

interfaces [39]. So decreasing the bilayer will significantly amplify the effect of interfaces. In a 

study of sliver and nickel multilayer [33] increase of interfaces density was, in fact, the source of 

more positive (tensile) stress. More interfaces induce higher interface stress which was measured 
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to be ~ -2.27 ±0.67 (J/m2).   There is no direct method for measuring the interface stress in NMMs 

but it can be calculated through the following equation:  

                                                                       𝜎𝑆𝐶−< 𝜎 > =
2𝑓

𝜆
                                                             (3) 

where 𝜎𝑆𝐶 is the stress measured from the substrate curvature using Stoney method [40],  𝜎 is the 

stress of coating measured using XRD scans; f is the interface stress, and λ is the bilayer thickness. 

Unfortunately, no data from the substrate curvature was gathered before deposition, so evaluation 

of substrate curvature and consequently interface stress is not possible here. 

Figure 2.10 indicates the residual stress of both Al and Ti phases for all Al/Ti NMMs. An 

important factor here is that how does the type (tensile or compressive) and magnitude of stress 

affect the crystal structure of the film. On a study of Au/Ni metallic multilayers [41] a negative 

and positive strains in Au and Ni were reported respectively. While the bilayer thickness was 

decreasing, because of the residual stress the coherency of the system was increasing which 

resulted in reducing the difference in the lattice parameter of two phases. 

Figure 2.16 indicated the d-spacing variation for both aluminum and titanium phases in 

Al/Ti NMMs measured at ψ = 0. By reducing the bilayer thickness Al d-spacing decreases from 

~0.1432 nm to ~ 0.1428 nm. Ti d-spacing is also increased with a decrease of bilayer thickness 

from ~ 0.13335 nm to ~ 0.134 nm. To evaluate the coherency of interfaces two adjacent planes d-

spacing ( or lattice constant) need to be compared but as it was indicated at the beginning 

comparing the Ti (00.2) and Al (111) is not possible because of the superposition. Since the 

measured residual stress in this study is an average of stress in a volume of materials [42] the same 

type of size change in the d-spacing of adjacent interfaces can be expected.  

Another important issue here is that both aluminum and titanium might go through a partial 

[27, 28] phase transformation while the bilayer thickness is changing. Rajarshi et al. [43] indicates 
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that for AL/Ti NMM at a bilayer thickness of 5.2 nm, both Al and Ti phases exhibit HCP structure 

while their d spacing is almost identical at ~ 0.2314 nm. Mentioned bilayer thickness for Al/Ti is 

very much close to NMM A with a bilayer of ~ 5 nm. Indeed, Sample A demonstrated the 

maximum nano hardness in nanoindentation tests and as it was pointed out at the beginning, a 

more coherent interface will eventually increase the multilayer structure strength [44]. 

2.4 Summary and Conclusions  

Six Al/Ti NMMs along with their monolithic constituents were deposited separately on 

silicon substrates. SEM and AFM analysis of sample surfaces indicate that the grain size and 

surface roughness generally decreases with decreasing individual layer thickness.  

Nanoindentation test indicates exceptional strength of NMM at 2.5 nm layer thickness, comparable 

to bulk titanium. The increase of strength of NMMs with decreasing layer thickness were in good 

agreement with s modified CLS model. Residual stress measurement performed using GIXRD 

indicated negligible stress for samples with thicker bilayers. This trend changes with decreasing 

individual layer thickness. Significant tensile residual was present in the Ti phase at small layer 

thickness (2.5 and 5 nm) while aluminum phases exhibited compressive stress. The nature and 

magnitude of residual stresses in Al and Ti layers were believed to be governed by the  deposition 

conditions such as deposition pressure. These stresses may decrease the misfit strain and ultimately 

result in a more coherent interface which leads to higher strength of NMMs. 
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2.6 Tables and Figures 

 

Table 2.1 Physical and mechanical properties of all samples. 
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Figure 2.1 NMMS schematic, deposition tool and dicing. (a) A schematic layer by layer structure 

of equal-layered NMM. The bottom layer was always titanium for better adhesion with the silicon 

substrate. (b) Photo of modified SFI sputtering tool at nano research and educational center 

(NREC) at USF. Photos of (c) as-deposited Al/Ti NMMs, and (d) diced Al/Ti NMMs with 

photoresist protective layer on top. 
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Figure 2.2 SEM images of FIB lift out procedure. (a) Deposition of platinum on sample surface 

using E-Beam, (b) deposition of platinum on larger cross section and over pervious protective 

layer using ion beam, (c) removing the side of deposited region using ion beam in several steps, 

(d) milling the sample cross section to OmniProbe needle and removing cross section for milling 

and mounting over copper grid, (e) transferring the sample over copper grid, and (f) milling the 

sample over copper grid followed by final thinning. 
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Figure 2.3 GIXRD patterns for sample A through F. Intensity of peaks is increasing proportional 

to individual layer thickness.  
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Figure 2.4 SEM image from surface of as-deposited Al/Ti NMMs. 
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Figure 2.5 AFM images of specimens.  NMM A, B, C, D, E, F, monolithic aluminum and 

monolithic titanium respectively shown as a, b, c, d, e, f, g and h. All scans were performed over 

areas of 5 × 5 µm2. 
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Figure 2.6 Arithmetic average of surface roughness and grain size of as-deposited samples. Grain 

size and surface roughness demonstrate a similar trend for both NMMs and monolithic specimens. 
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Figure 2.7 TEM images from the cross section of specimen (a) A and (b) D respectively. 
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Figure 2.8 Summary of nanoindentation results from this study (black squares) with other NMMs 

containing Al or Ti layers.  
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Figure 2.9 Hardness of Al/Ti NMMs v.s. individual layer thickness of all NMMs. The scattered 

data corresponds to experimental measurents and the solid line corresponds to predications by CLS 

model. 
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Figure 2.10 Summary of residual stress measured from XRD analysis for both aluminum and 

titanium phases of all NMMs. 
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Figure 2.11 Summary of d-spacing of Al and Ti layers for all Al/Ti NMMs. Scans were performed 

at ψ = 0.  
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CHAPTER 3: NANOWEAR BEHAVIOR OF AL/TI NMMS 

 

3.1 Note to Reader 

Portion of this chapter has been previously published in the journal of Surface and Coating 

Technology, Volume 53, Issue 18, October 2005, Pages 4817–4824, and have been reproduced 

with permission from Elsevier. Permission is included in Appendix A.1.4. 

3.2 Introduction 

Nanostructure metallic multilayers (NMMs) are widely used as protective coatings due to 

their excellent mechanical properties [1, 2], corrosion resistance [3-5], and wear resistance [6]. 

Although there are extensive studies on the structural and mechanical properties of NMMs [6-8], 

those on the tribological studies of NMMs, especially Al/Ti NMMs remain limited [9, 10]. In 

tribology, one of the most implemented definitions for wear has been proposed by Archard [11], 

relating the mechanical wear rate to material’s hardness, wear coefficient and normal load. Based 

on this definition, material hardness (H) and wear rate (W) have an inverse relationship (W ∝ H-

1). This law has been found to be highly successful for monolithic bulk materials during dry sliding 

wear. However, it remains unclear how does hardness of the NMMs affect its wear resistance. In 

addition, it is still unknown how does the individual layer thickness affect the microstructure 

evolution and wear resistance of NMMs. 

 In the current study, two representative Al/Ti NMMs with 2.5 nm and 30 nm individual 

layer thicknesses are chosen as the test samples. Nanowear behavior of the two NMMs and their 

corresponding microstructure evolution were evaluated. This study will address the following 

topics: (1) characterization of microstructure of as-deposited Al/Ti NMMs with 2.5 and 30 nm 

http://www.sciencedirect.com/science/journal/13596454/53/18
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layer thickness, (2) investigating the tribological and mechanical properties of NMMs through 

nanowear and nanoindentation tests, and (3) establishing the relationship between the mechanical 

and tribological properties through post-wear material characterizations. 

3.3 Experimental Procedure  

Al/Ti NMMs with equal-spaced Al and Ti layers were deposited on Si (100) substrates in 

a modified SFI cluster sputter tool using an Eratron 8210 DC power supply. Two types of NMMs 

were deposited, hereafter denoted as AT2.5 and AT30 (as listed in Table 3.1), with individual layer 

thicknesses of 2.5 nm and 30 nm and total film thickness of 930 ± 16 nm and 1.8 ± 0.02 μm, 

respectively. The arithmetic average surface roughness (Ra) of AT2.5 and AT30 is 5.96 nm and 

8.67 nm, respectively, measured using Digital Instruments atomic force microscopy.   

Grazing incidence x-ray diffraction (GIXRD) was performed using PANalytical X’Pert 

PRO diffractometer (Cu Kα, 154.06 pm) at 45 kV and 40 mA with an incidence angle of 3º and 

step size of 0.025º. The penetration depth (PD, the depth at which the intensity is attenuated by a 

factor of 1/e) was estimated from PD = sin 𝛼 /𝜇 [12], where 𝛼 is the grazing incidence angle and 

𝜇 is the linear adsorption coefficient, ~ 523.8 cm–1 estimated from Al50Ti50 composite [13]. The 

calculated PD is ~ 1.0 μm, comparable to the total film thickness and much larger than the 

individual layer thickness of both samples. Sample surfaces were examined using a Hitachi SU70 

scanning electron microscopy (SEM) at accelerating voltage of 30 kV. Electron backscattered 

diffraction (EBSD) analysis was performed on a JEOL ARM transmission electron microscope 

(TEM) operated at 200 kV coupled with Topspin data acquisition system. The phase and 

orientation mappings were obtained using ASTAR software with a precession angle of 0.5o and a 

step size of 5 nm. TEM analysis was performed using TECNAI G2 in bright-field (BF), dark-field 
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(DF), and selected area diffraction (SAD) modes. TEM samples were prepared using the standard 

lift-out method in a FEI Quanta 200 focused ion beam (FIB) microscope.  

Film hardness and elastic modulus were measured using a Hysitron triboindenter Ti900 

with a Berkovich tip following the Oliver and Pharr method [14]. The tip area function was 

calibrated using a standard fused quartz sample. For each nanoindentation test, a trapezoidal 

loading profile was used with 2 or 3 mN maximum load, 2 sec holding time, and 3 sec 

loading/unloading time. This maximum load was chosen to ensure that the total penetration depth 

was less than 15% of the total sample thickness to minimize the substrate effect [15]. Average 

spacing between the indents was kept at least 8 μm apart to minimize indentation interactions.  

Nanowear tests were performed using the triboindenter with a 1 µm cono-spherical tip. 

Wear tests were performed under 30, 60 and 93 μN normal loads and up to 10 cycles over areas of 

2 × 2 μm2. Wear volume (V) is calculated by multiply the wear area by the wear scar height, which 

was determined from the height difference between the unworn and worn surfaces using Hysitron 

Triboview software. Under a specific normal load (F), the wear rate (w) is defined as the ratio 

between wear volume and the number of cycles (n). Post-wear nanoindentation tests were 

performed on selected samples with worn area of 35 × 35 μm2 to probe the subsurface hardness, 

using the same loading profiles defined previously in the nanoindentation tests.   

3.4 Results 

3.4.1 Microstructure of As-Deposited Al/Ti NMMs 

GIXRD line scans of as-deposited AT2.5 and AT30 are shown in Fig. 3.1. The high 

intensity peak located at 2θ = 56.2° is ascribed to Si (311) from the substrate. It can be seen that 

for both samples, fcc Al phase co-exists with hcp Ti phase. The peak at 2θ ≈ 38.5° arises from 

superposition of Al (111) and Ti (00.2). The lattice constants are aAl = 4.046 Å for fcc-Al, and aTi 
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= 2.969 Å and cTi = 4.666 Å for hcp-Ti. Significant peak-broadening was observed in AT2.5 due 

to its ultra-fine layer thickness and, very likely, bi-axial micro strain [16]. Unfortunately, a good 

estimation of the micro strain is not possible here due to insufficient Bragg diffractions and 

overlapping of Al(111) and Ti (00.2). SEM images of the as-deposited samples are shown in Fig. 

3.2(a) and (b). The surface morphology of both samples consists mainly of spherical nodules 

around 200–500 nm in diameter. Cross-sectional TEM images of AT2.5 and AT30 in Fig. 3.2(c) 

and (d) reveal the equal-spaced layered structure, where the bright and dark stripes correspond to 

the Al and Ti layers, respectively. The average layer thickness (ℎ) is 2.5 ± 0.3 nm and 30 ± 1.5 nm 

for AT2.5 and AT30, respectively, measured from cross-sectional TEM images. Low 

magnification TEM images (not shown here) reveal that through thickness columnar grains are 

present for both samples, similar to those reported previously [17]. The in-plane grain size (d) is ~ 

140 nm for both samples, much larger than their respective layer thicknesses. Thus, in the present 

study, the layer thickness is considered as the critical structural length scale that governs the 

mechanical and tribological behavior [18].      

HRTEM image of AT30 in Fig. 3.3(a) shows an orientation relationship of Al (111) || Ti 

(00.1), both parallel to the interface plane. The interface is semi-coherent, with out-of-plane edge 

dislocations separated by ~ 2.44 ± 0.65 nm (see IFFT images in Fig. 3.3(b) and (d)), in agreement 

with a previous report [19]. These quasi-periodically spaced edge dislocations also lead to a 

misorientation of ~ 3.2
o
 between Al (111) and Ti (00.1) planes. The HRTEM image in Fig. 3.3(c) 

shows Al (200) || Ti (10.1), both inclined to the interface plane at an angle of ~55
o
, with a measured 

misfit strain of ~ 8%. According to the Al/Ti multilayers bi-phase diagram [19], the interface 

between the hcp-Ti and fcc-Al layer transforms from incoherent to coherent when the bilayer 

thickness becomes smaller than ~ 12.5 nm [19]. However, for AT2.5 (with a bilayer thickness of 
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~ 5 nm), a coherent interface is not observed. Instead, semi-coherent interfaces with dislocation 

spacing of ~ 2.23 ± 0.50 nm are observed. Interestingly, Fig. 3.4(b) shows that the hcp-Ti layer of 

as-deposited AT2.5 exhibited fcc structure (Fig. 3.4(b) and (c)) under TEM analysis. Similar 

polymorphic transformation was reported previously in Al/Ti [20] and Ni/Ti [21] multilayers with 

ℎ Ti around 30  ̶  500 nm, where the as-deposited hcp-Ti layers transformed to fcc structure after 

ion milling during TEM sample preparation. The measured lattice constant ratio between the fcc-

Al and fcc-Ti phases is aTi/aAl = 1.08, very close to the value of 1.09 reported previously for Al/Ti 

multilayers [20]. In addition, the HRTEM image and SAD patterns in Fig. 3.4 indicate that the fcc-

Ti and fcc-Al layers were twinned with noncoherent twin boundaries, as indicated by white arrows 

in Fig. 3.4(a).  

3.4.2 Nanoindentation of As-Deposited Al/Ti NMMs  

Representative loading/unloading curves of AT2.5 and AT30 are shown in Fig. 3.5. No 

obvious “pop-in” was observed from the load-displacement curves of both samples, indicating the 

absence of macroscopic shear band formation. A higher penetration depth is observed for AT30 

than AT2.5 under the same loading condition, indicating a higher resistance to plastic deformation 

of the latter. The reduced Young’s modulus (Er) and hardness (H) of as-deposited samples are 

listed in Table 3.1. In particular, AT2.5 exhibits a high hardness of 4.59 GPa, ~ 50% of the 

theoretical strength (~ G/10) of a Al50Ti50 composite. It is also interesting to note that AT2.5 

exhibits a smaller Er/H value than AT30, which indicates a higher wear resistance of the former 

sample [11, 22, 23].   

Insets in Fig. 3.5 show the post-indentation surface topographies of both samples. Whereas 

indents of AT30 exhibit high contrast from the undeformed surface, those of sample AT2.5 are 

hardly visible due to the small penetration depths. After careful SEM analysis, it was not possible 
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to differentiate the indents of AT2.5 from the as-deposited surface roughness. Thus, post-

indentation microstructure characterization was performed only for AT30. Fig. 3.6(b) shows the 

phase map of the box area in Fig. 3.6(a), where the red and green colors represent the fcc-Al and 

hcp-Ti phases, respectively. It can be seen that immediately below the indent, Al layer thicknesses 

are reduced to ~ 10 nm (corresponds to a local compressive strain ~ 67%), while Ti layer 

thicknesses remain almost unaffected. For multilayers consisting of two phases with different 

strengths, plastic deformation typically occurs in the softer phase first until the stress is high 

enough to transfer or generate dislocations in the harder phase. Thus, in the present study, it is not 

surprising that plastic deformation is mainly accommodated by the softer Al layers. In addition to 

layer compression, several shear bands (SBs) are observed, as indicated by the dashed lines in Fig. 

3.6(b). During co-deformation of multilayers, shear bands are often observed due to the difference 

in flow stresses and hardening behaviors of the adjacent layers, such as those seen in the Al/W 

[24] and Cu/Ta multilayers [25, 26]. Fig. 3.7 shows the orientation maps of AT30 after 

nanoindentation. From Fig. 3.7(b), it can be seen that (111)Al  || (00.2)Ti || film growth direction (y-

axis as defined in Fig. 3.6(a) inset). This is not surprising as preferred growth in <111> and <00.2> 

directions for fcc and hcp thin films have been commonly observed to minimize surface energy 

during deposition [16]. Just below the indent, grains with orientations different from the original 

were observed, as indicated by the white arrows in Fig. 3.7(c). The orientation change of these 

sub-grains clearly indicates local grain rotation and formation of cell boundaries perpendicular to 

the layer interfaces.    

3.4.3 Nanowear Tests and Subsurface Microstructure Evolution  

Fig. 3.8 shows typical surface topographies of the two samples after 10 cycles of wear tests 

under 93 μN load. Surface height profiles in Fig. 3.8(c) show that both the wear scar depth and the 
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pile-up height are lower for AT2.5, indicating smaller material loss and higher wear resistance 

than AT30. Fig. 3.9(a) and (b) shows that the wear rate is initially high during the running-in 

period, which then reaches steady-state wear after ~ five cycles. Fig. 3.9(c) shows the wear rates 

increase almost linearly with the applied load, in agreement with Archard’s law [11]. In addition, 

the wear rate of AT30 is at least two times that of AT2.5, as expected due to its lower hardness 

and higher Er/H ratio [27]. It was noticed that increasing the wear track dimensions from 2 × 2 

μm2 to 35 × 35 μm2 leads to an increase of wear scar depth. This is not surprising given that the 

conical tip radius (1 µm) is close to the smaller wear track dimensions. For example, the wear scar 

depth of AT30 after 10 cycles of wear under 93 μN load increased from ~ 110 nm to ~ 650 nm 

when the wear track dimension was changed from 2 × 2 μm2 to 35 × 35 μm2. 

Fig. 3.10 shows a montage BF cross-sectional TEM image of AT30 after 10 cycles of wear 

tests under 93 μN load. The worn and unworn areas and the pile-up can be seen clearly. Within 

the top ~ 100 – 150 nm, a severely plastically-deformed layer (SPDL) was observed. During nano 

contacts, the plastic zone size c can be estimated from Johnson’s spherical cavity model as [28]  

c = √
3P

2πσy
 , (1) 

where P is the normal load, and σy is the yield strength (approximated as 
1

3
H from Tabor 

relationship). The estimated c from eqn. (1) is ~ 207 nm for AT30, close to the size of SPDL 

observed by TEM. Within the SPDL, significant layer compression and shearing are observed, and 

the well-defined interfaces between Al and Ti layers are lost. Wear debris and pile-ups are mainly 

generated by material removal from the SPDL. Fig. 3.11(a) and (b) show the BF and DF TEM 

images of a wear debris attached to the unworn surface of AT30. It can be seen that the majority 

of the debris contains severely-refined layers, with the minimum layer thickness ~ 3.8 nm for both 

the Al and Ti layers, corresponding to a local compressive strain of ~ 87%. The interfaces of the 
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deformed layers are wavy due to shear band formation, as shown in the pile-up in Fig. 3.11 (c) and 

(d). A similar wavy layered structure also was reported in dual phase Ag-Cu alloy after severe 

sliding wear [29]. In addition, vortex-like features are often observed in the SPDL, as shown in 

Fig. 3.11(c) and (d), which resembles the Kelvin-Helmoltz instability [30]. Using molecular 

dynamics simulations, Kim et al. [30] have demonstrated that these subsurface vorticities was 

developed due to wear-induced shear instability at the contacting surfaces. 

The subsurface microstructure of AT2.5 was drastically different from AT30. Fig. 3.12 

shows the TEM images of AT2.5 after 10 cycles of wear under 93 μN load. Unlike AT30, no shear 

band formation was observed and all layers remained planar. The SPDL is ~ 30 nm, significantly 

smaller than the plastic zone size of ~ 170 nm estimated from eqn. (1). HRTEM image in Fig. 3.12 

(c) shows that just below the surface, the contrast between adjacent Al and Ti layers diminished, 

indicating the interfaces are more relaxed with fewer misfit dislocations. IFFT images at depths ~ 

10 nm (inset 1 in Fig. 3.12 (c)) and 40 nm (inset 2 in Fig. 3.12 (c)) confirm that the lattice mismatch 

and the edge dislocation density are reduced near the top of the SPDL. These results suggest that 

the non-equilibrium interfaces of Al/Ti NMMs, which contain excess free volume and 

dislocations, were relaxed during abrasive wear, similar to the relaxation of non-equilibrium grain 

boundaries after cyclic mechanical loading [16]. Finally, it is noted that while the γ-AlTi and Al3Ti 

intermetallic phases were found in Al/Ti NMMs after ion irradiation [10] or high pressure torsion 

[31], no intermixing were observed after indentation or wear in the present work.    

3.5 Discussion  

3.5.1 Phase Stability of Ti in Al/Ti NMMs 

An interesting observation of the present work is that the Ti layers of as-deposited AT2.5 

transform from hcp to fcc structure after TEM sample preparation. A similar behavior was not 
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observed in AT30, indicating that phase stability of Ti is related to the layer thickness of NMM. 

Even though fcc-Ti is not predicted by the equilibrium phase diagram, metastable fcc-Ti has been 

reported in epitaxial Ti thin films (with < 50 nm film thickness) [32] and Ti powders after high 

energy mechanical milling [31], where compressive residual stresses were both present. 

Chakraborty et al. [16] showed that a compressive stress of more than 2.5 GPa was developed in 

Ti at low film thicknesses. This high stress is likely to generate Shockley partials on basal planes 

that can alter the stacking sequence, similar to what occurred during martensitic phase 

transformation. The phase stability of fcc-Ti and hcp-Ti can be further understood by considering 

the change of total free energy, which includes the change in bulk free energy, elastic strain energy, 

and surface free energy, during the hcp to fcc transformation. At large film thicknesses, the bulk 

free energy term dominates and hcp-Ti is more stable ( ~ 0.065 - 0.07 eV/atom lower than fcc-Ti 

[16]); at low film thicknesses, the elastic strain energy and surface free energy dominates and fcc-

Ti becomes more stable. A previous study [16] showed that the strain energy density of fcc-Ti thin 

film is about one order of magnitude lower than that of hcp-Ti at thicknesses smaller than 144 nm. 

Thus, there exists a critical film thickness, below which fcc-Ti is more stable than hcp-Ti. For 

Al/Ti multilayers, this critical film thickness was found to increase with decreasing volume 

fraction of Ti [19]. According to Banerjee et al. [19], for Al/Ti multilayers with 50% volume 

fraction of Ti, the estimated critical layer thickness is around 1.4 – 1.8 nm, which is comparable 

to the layer thickness of AT2.5, and much smaller than that of AT30. Thus, in the present work, 

metastable fcc-Ti was seen only in the former.         

3.5.2 Al/Ti Interface Structure  

An orientation relationship of (111)Al  || (00.2)Ti || interface plane was observed in both as-

deposited samples (note the (00.2)Ti plane of AT2.5 transformed to (111)Ti after TEM sample 
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preparation). The interfaces were always semi-coherent, separated by edge dislocations with 

spacing around 2.2–2.4 nm (see section 3.1 for details). For NMMs, the degree of interface 

coherency depends on the layer thickness, and there exists a critical layer thickness (hc) for 

epitaxial growth. If h ≤ hc, the interface is fully coherent; if h > hc, dislocations will be formed to 

relax the misfit strain, and semi-coherent or incoherent interfaces will be formed. This critical layer 

thickness hc can be estimated as [33]  

2
ln

2

c
c

m

hb
h

b

 
   

 
,  (2) 

where b is the Burgers vector and m  is the lattice misfit strain. In the current Al/Ti system, assume 

<a> type Burgers vector for Ti, �⃗� =  
1

3
< 112̅0 > = 0.17 nm, the misfit strain m  = 8%, the 

calculated value of hc is 0.43 nm, comparable to a few monolayers. Previous experimental work 

shows that Ti grows epitaxially on Al (100) up to 5.5 monolayers [21], and on Al (111) up to 2 

monolayers [34]. This small hc indicates that misfit dislocations are inevitable to accommodate for 

the misfit strain for Al/Ti NMMs with nanometer scale layer thicknesses. The spacing between 

misfit dislocations, 𝜆, can be estimated as 𝜆 =  
𝑏

𝜀𝑚
 = 2.1 nm, which agrees very well with the 

HRTEM observation.  

3.5.3 Wear Induced Subsurface Work-Hardening  

As presented in section 3.3, wear leads to characteristically different microstructure 

evolutions for AT2.5 and AT30. To evaluate how these microstructure evolutions affect the 

subsurface mechanical properties, nanoindentation tests were performed on worn surfaces of 

AT2.5 and AT30 after wear tests under 60 µN normal load up to five cycles. The results are shown 

in Fig. 3.13. It can be seen that both AT2.5 and AT30 experienced significant work-hardening, 

reaching a hardness of 6.80 ± 0.16 GPa and 4.35 ± 0.17 GPa, respectively, after five cycles of 
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wear. Quite remarkably, this subsurface hardening is more significant for AT2.5, where the 

hardness increased by ~ 30% despite its small microstructural change. As discussed in the 

introduction, at layer thickness of 2.5 nm, the flow stress is related to the interface barrier stress, 

which is highly sensitive to the interface structure. As shown in Fig. 3.12 (c), with decreasing 

distance from the surface, a decrease of interface dislocation density was observed. In other words, 

wear increased the interface coherency right below the contact surface. Thus higher coherency 

stress needs to be overcome for dislocations to transmit to the other layers [32]. For AT30, the 

hardness increased by ~ 16 % after five cycles of wear. At this layer thickness, the operative 

strengthening mechanism is CLS (or modified CLS). Consider the greatest layer thickness 

refinement (~ 3.8 nm) in the SPDL of AT30, it can be estimated that the maximum strength is 

increased by ~ 2.1 times compared to the bulk material. However, since these ultrafine structures 

were only observed in the topmost subsurface material, the measured hardness is much lower and 

represents an average value over the entire SPDL. Finally, it is worth noting that Al/Ti NMM 

studied here is a promising lightweight high strength material. Given the low density of Al and Ti, 

the estimated specific strength of Al/Ti NMM is around 320–500 kN·m/kg (assuming a Tabor 

factor of three), well in excess of steel (130 kN·m/kg), Al-6061 (110 kN·m/kg), and Ti-6Al-4V 

(240 kN·m/kg) [35]. 

3.6 Conclusions 

In summary, equal-spaced Al/Ti NMMs with individual layer thickness (h) of 2.5 and 30 

nm were deposited on Si substrate by physical vapor deposition. Semi-coherent interfaces between 

the Al and Ti layers were observed in both samples, with an orientation relationship of Al (111) || 

Ti (00.2), parallel to the interface plane. The misfit strain was ~ 8%, and the nominal misfit 

dislocation spacing was ~ 2.2–2.4 nm for both samples. The hcp-Ti layer was unstable at lower 
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layer thicknesses (2.5 nm) and transformed to metastable fcc structure after TEM sample 

preparation. Both hardness and wear resistance increased with decreasing layer thickness. The 

wear rate approached a steady state after five cycles and scaled linearly with applied load, in 

agreement with Archard’s law. Wear induced severe plastic deformation of the subsurface material 

and led to the formation of a SPDL of 100–150 nm and 30 nm for AT30 and AT2.5, respectively. 

The deformation mechanism was found to strongly depend on layer thickness. At h = 30 nm, severe 

compression and shearing of Al and Ti layers led to shear band and vorticities formation in the 

SPDL. At h = 2.5 nm, wear-induced plastic deformation relaxed the interface and lowered misfit 

dislocation density. These relaxed interfaces of AT2.5 led to an increase in surface hardness by ~ 

30% after five cycles of wear. 
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3.8 Tables and Figures 

 

Table 3.1 Summary of microstructure and mechanical properties of Al/Ti multilayers. Layer 

thickness (h) and in-plane grain size (d) were measured from TEM analysis. Mechanical properties 

including maximum penetration depth (hmax), hardness (H), and reduced modulus (Er) were 

measured from nanoindentation under 2  ̶  3 mN load.   

 

Sample  h (nm) d (nm) hmax (nm) H (GPa) Er (GPa) Er/H 

AT2.5 2.5 ± 0.3 138 ± 43 142.2 ± 8.0   4.59 ± 0.53 118.5 ± 7.8 25.8 

AT30 30.0 ± 1.5  140 ± 30 214.1 ± 9.3   3.08 ± 0.25 116.7 ± 6.4 37.9 

 

 

Figure 3.1 Grazing-incidence XRD line scans of as-deposited AT2.5 and AT30. 
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Figure 3.2 SEM images of surface morphology of as-deposited (a) AT2.5 and (b) AT30. Cross-

sectional TEM images of as-deposited (c) AT2.5 and (d) AT30. Arrows in (c) and (d) indicate film 

growth direction. 
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Figure 3.3 (a) and (c) HRTEM images of as-deposited AT30, (b) inverse fast Fourier transforms 

(IFFT) image of box area in (a), and (d) IFFT of image (c). Insets in (b) and (d) show the FFT of 

images (a) and (c), respectively. Arrow in (a) and (c) indicates film growth direction.  
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Figure 3.4 (a) HRTEM image of as-deposited AT2.5, (b) corresponding selected area diffraction 

of image (a), and (c) schematic of diffraction patterns from twinned fcc-Al and fcc-Ti along <11̅0> 

axis.  

 

 

 
Figure 3.5 Typical nanoindentation load-displacement profiles of AT2.5 and AT30 under 3 mN 

load. Insets show surface topographies of the two samples after nanoindentation. Scale bar in both 

insets is 10 µm. 
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Figure 3.6 (a) Cross-sectional BF TEM image of AT 30 after nanoindentation, and (b) orientation 

phase map from box area in (a). Red and green in (b) represent the Al and Ti phases respectively.  

 

 

 

 

 
 

 

Figure 3.7 Orientation maps in (a) X, (b) Y, and (c) Z direction. This is as defined in Fig. 6(a) of 

AT30 after nanoindentation test. The orientations are color coded according to the triangle legend 

in (d).   
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Figure 3.8 Surface topographies of (a) AT2.5 and (b) AT30 after 10 cycles of wear with 93 μN 

load. (c) Surface height profiles of samples AT2.5 and AT30 measured from images (a) and (b). 

 

Figure 3.9 Wear rates as a function of number of cycles for samples (a) AT2.5 and (b) AT30. (c) 

Wear rates of AT2.5 and AT30 after 10 cycles of wear test under 30, 60 and 93 µN load. 

 

 

 

 

 

 

 

Figure 3.10 Montage BF TEM image of AT30 after 10 cycles of wear under 93 μN load. The wear 

scar area is 35 × 35 μm2. The bright and dark contrast corresponds to the Al and Ti layers 

respectively. Carbon and Pt was used as protective coatings during TEM sample preparation using 

FIB.  
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Figure 3.11 (a) BF, and (b) DF TEM images of a wear debris attached to the surface of AT30 after 

10 cycles of wear under 93 μN load. White dashed lines represent the wear surface. (c) BF and (d) 

DF TEM images of pile-up, (e) and (f) BF TEM images of subsurface material from the same 

sample.   
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Figure 3.12 (a) BF, and (b) DF TEM images of AT2.5 after 10 cycles of wear under 93 µm load. 

(c) Montage HRTEM image from the SPDL (as indicated in (a)). The wear scar area is 35 × 35 

μm2. Dashed lines represent the wear surface. Insets 1 and 2 in (c) correspond to the IFFT of box 

area 1 and 2 respectively.  

 

Figure 3.13 Nanoindentation hardness measured on wear scars (35 × 35 µm2) of AT2.5 and AT30 

after wear tests under 60 µN load up to five cycles.  
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CHAPTER 4: CORROSION PROPERTIES OF AL/TI NMMS 

 

4.1 Introduction  

Nanoscale Metallic Multilayer (NMM) coatings are widely used as protective layers 

because of their excellent mechanical and tribological properties [1-3]. One of the important issues 

which may limit applications of these coatings is how they corrode in different environments 

which have aggressive components such as chloride. A multilayer coating which demonstrates 

excellent wear resistance and high hardness but poor corrosion resistance is hardly useful for 

industrial applications in severe environment. Although aluminum coatings are often used as the 

cathodic protection of steel structures, their low mechanical performance is usually a drawback. 

To overcome this limitation, Creus et al. [4] has studied the effect of chrome alloying on the 

corrosion resistance of Al coatings. They found that an amorphous Al-Cr coating offers better 

corrosion resistance by limiting the galvanic corrosion of Al and steel. Li et al. [5] found that 

adding a second layer of AlN over a protective Al coating on NdFeB substrate could significantly 

decrease the corrosion rate by creating a denser structure in both layers with better metrology 

bounding between substrate and the overall coating. Similar to aluminum coatings, titanium is well 

known for its excellent corrosion resistance in chloride containing environments. In this study Al 

and Ti are used as two constituent phases in four nanoscale metallic multilayer (NMM) structures 

with individual layer thickness from 2.5 to 30 nm. The effect of microstructure on the corrosion 

resistance of these Al/Ti NMMs will be evaluated in simulated saline environment at room 

temperature [1, 2, 6, 7]. Aluminum and titanium have very similar electrode potential (-1.628 V 
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for Ti2+ and -1.662 V for Al3+) so galvanic corrosion between adjacent layers, which is the most 

likely type of corrosion in a multi metallic structure, may be limited. Crevice corrosion is unlikely 

to happen since the layer by layer structure was made through a vacuum process and similar phases 

are separated from each other with a layer of second phase (component). Finally, it is noted that 

pitting instead of uniform corrosion of Al/Ti NMMs is expected as the electrolyte was controlled 

at a pH ~7.  

4.2 Experimental Procedure 

Four Al/Ti NMMs with different individual layer thicknesses were deposited using direct 

current sputtering machine with Earton 8210 as the power supply. In each NMM, all layers 

(including both Al and Ti) had the same individual layer thickness. Samples were deposited on Si 

(100) wafers using aluminum and titanium S-gun toroidal with purities of 99.999%. Argon gas 

maintained the deposition chamber pressure at ~ 5 mTorr.  A dicing tool from Micro Automation 

was used to cut the wafers into small pieces. Grazing incident X-ray diffraction (GIXRD) test was 

performed on all NMMs to confirm the crystal structure of as-deposited samples. Scanning 

electron microscopy (SEM, Hitachi SU-70) was used for surface characterization pre and post 

corrosion tests. Cross-section samples of NMMs were prepared using focus ion beam (FIB, FEI) 

and characterized using transmission electron microscopy (TEM, Tecnai 20). Hardness and 

module of elasticity were measured using Hysitron TI900 triboindenter with a standard Berkovich 

tip. At least four 1 × 1 cm2 specimens from each NMM samples were utilized for the corrosion 

test. Each specimen went under several sealing steps before potentiodynamic test using heat shrink 

wrap, stop-off brazing aid and polyurethane M-Coat (Fig. 4.1. shows these steps toward specimen 

preparation). There was at least 24 hours gap between sealing specimens and potentiodynamic 

tests. NaCl in the form of powder was solved into deionized (DI) water to achieve 0.6 M solution 
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at 25 °C. For consistency, all tests were performed using the same batch of a solution as the 

electrolyte. Standard NaCl reference electrode (CHI111) and mixed metal oxide coated titanium 

mesh counter electrode were implemented for this test. The corrosion cell was a non-conductive 

clear plastic or glass beaker. A camcorder was used to record any changes over the surface of 

samples in the whole examination procedures. Initial conditions potentiodynamic tool were 

defined as:  

 Initial E (V) = - 0.25 - + 0.3 

 Scan rate (mv/s) = 0.167 

 Sample period (s) = 1 

 Sample Area= different depending on samples sealing condition. 

 Density (g/cm3) = 3.6 

 Equiv. wt= 11.9 

 0.6 M Nacl electrolyte  

All specimens were immersed into 0.6 M NaCl solution for at least 1 hour before starting the test 

to reach a steady-state open circuit potential.  

4.3 Results and Discussion  

4.3.1 Morphology and Characterization of Al/Ti NMMs 

Fig. 4.2 shows the TEM images from cross-sections of specimen A and D, which have the 

smallest and largest bilayer thickness of ~ 5 nm and ~ 60 nm respectively, among all samples 

investigated here (as listed in Table 4.1). Both samples show a coherent multilayer structure where 

the white and dark regions correspond to the aluminum and titanium phase in the multilayer 

structure respectively. Interfaces of two constituent phases are distinguishable, demonstrating a 

clear layer by layer structure. Cross section images also indicate the columnar structure of grains 
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with epitaxial growth of layer, similar to that reported by Josell et al. [8]. The presence of titanium 

as the second phase reduced the overall columnar grain size of deposited layers which is a common 

behavior in monolithic aluminum growth [6, 9]. Figure 4.3 summarizes the arithmetic average of 

surface roughness (Ra) and grain size of all NMMs and monolithic samples. By decreasing the 

bilayer thickness from specimen D to B, both surface roughness and grain size are decreasing 

although the trend changes slightly from sample B to A where a small increase is observed. 

Fig. 4.4 demonstrates the GIXRD patterns of all four Al/Ti NMMs. Silicon peak Si (311) 

coming from the substrates is visible at 57°. Strong fcc Al (220) at ~ 65° and hcp Ti (10.3) at ~ 

70.6° were observed for sample B, C and D, indicating the main crystal structure content of these 

NMMs, while an overlap of Al (111)/ Ti (00.2) can be observed at 38.48° with relatively lower 

intensity compared to the other two peaks. GIXRD patterns from Specimen A, on the contrary, 

have a stronger overlapping of Al (111) and Ti (00.2) at 38.48° while it shows much weaker Al 

(220) and Ti (10.3). Nanoindentation results indicate that decreasing the individual layer thickness 

increases the NMM hardness; specimen A demonstrates the highest hardness of ~ 4.94 GPa while 

specimen D shows the smallest hardness of ~ 3.13 GPa.  Table 4.1 summarizes the physical and 

mechanical properties of NMMs and monolithic specimen studied in this research. 

4.3.2 Corrosion Behavior of Al/Ti NMMs 

Mechanical properties, interface properties, porosity and microstructure will significantly 

affect NMMs corrosion rate [10]. For example, an inverse relationship has often been found 

between corrosion rate and porosity of NMMs. Figure 4.5 summarizes the typical potentiodynamic 

polarization curves of all NMMs as well as monolithic Al. It can be seen that, samples C and D 

with a bilayer thicknesses of ~ 22.8 nm and ~ 60 nm respectively, behaves similar to monolithic 

Al. For these samples, active corrosion starts right after 𝐸𝑜𝑐, in the anodic region, with no signs of 
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passivation. On the other hand, samples A and B, with individual layer thickness of 2.5 nm and 

5.2 nm, exhibit much lower corrosion current density and well-defined passive region above open 

circuit potential, indicating  a significant improvement of corrosion resistance and enhanced 

passivation ability of NMM at smaller layer thickness.   

S.H. Ahn et al. [11] suggested five different types of corrosion in multilayers including 

pitting, galvanic and crevice corrosion, etc., among which, penetration of defects into coating was 

identified as the main reason for corrosion of multilayers. Several factors including pinholes, pores 

and other types of porosity of coating will significantly degrade corrosion resistance of multilayer 

coatings. Next all major possible types of corrosion in Al/Ti multilayers are discussed as following: 

 Galvanic corrosion between coating and substrate: Since the silicon substrate will remain 

passive [12] through the whole electrochemical test, no significant galvanic coupling 

between substrates and coatings is expected to occur in the current study.  

 Pitting corrosion: Pitting or localized corrosion was observed by polarization curves for 

samples B, C, D and monolithic aluminum. SEM images (Fig. 4.6) from specimen surface 

after potentiodynamic tests confirm the presence of pitting corrosion. No sign of pitting 

was observed in polarization curves (in the measured potential range) or post-test SEM 

images of sample A surface (Fig. 4.6).  

 Crevice corrosion inside coating: this type of corrosion usually occurs when droplets, pores 

and pin holes are present in deposited coating.  Based on the TEM analysis from the cross-

section of multilayer there is no sign of droplets or pinholes in any of as-deposited NMM 

structures. Considering the deposition type (sputtering PVD) these observations were 

normal. Droplets and pin holes are typical of electron beam depositions [13]. Thus crevice 
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corrosion would unlikely be a primary reason for initiation of corrosion in the coating 

although it may later accelerate the corrosion process. 

 Galvanic corrosion between adjacent layers of Al and Ti: considering standard hydrogen 

electrode (SHE) as the reference, aluminum and titanium have very similar electrode 

potential (-1.628 V for Ti2+ and -1.662 V for Al3+). These two elements are coming right 

after each other in standard electrode potential table. On a study of Al/Ti multilayers 

deposited on NdFeB, T. Xie et al. [9] undermines the galvanic corrosion based on electro-

potential of Al and Ti, but does not rule it out. These authors reported pitting as the primary 

reason for corrosion initiation in Al/Ti multilayers. In a different study Charrier et al. [14] 

reported galvanic corrosion in Al/Ti multilayers as one of the active types of corrosion in 

the electrochemical test. Based on SEM images after the tests and polarization curves, 

corrosion starts in the form of pitting and then will be followed by galvanic corrosion in 

samples B, C, and D. Creus et al. [6] showed that cavity depth, which is defined as the gap 

between interconnected nodules will accelerate corrosion. Cavity depth exposes several 

layers on top layers with electrolyte and its aggressive particles of Cl- ions. Two phases of 

metal connected to each other and in contact with an electrolyte, is, in fact, a suitable 

situation for an occurrence of galvanic corrosion. To address the cavity depth issue, AFM 

scans were analyzed using the Nanoscope software. Deepest and highest spots over AFM 

image were located. A cross section profile which contained both spots was generated to 

determine maximum cavity depths. Table 4.2 summarizes the results from polarization 

tests along with the cavity depth in four Al/Ti NMMs. Considering the individual layer 

thickness of NMMs and their cavity depth, it can be concluded that there is a direct relation 

between bilayer thickness and amount of exposed cross section from two phases with 
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electrolyte. Cavity depth could potentially assist galvanic corrosion. More analysis after 

corrosion tests using SEM indicates that in all tested sample, corrosion starts in the form 

of pitting. In multilayers, a galvanic coupling of layers can be spotted through delamination 

of layers after corrosion. This behavior was not observed initially in samples B, C and D 

but did finally happen after pitting corrosion. Based on polarization curves, the required 

time for occurrence of pitting were ~ 2,000 s, and ~ 3,400s for sample D and C respectively. 

The potentiodynamic test was stopped for half of the samples of each specimen right after 

detecting pitting corrosion. For the other half of samples, test was kept running until the 

limits of predefined conditions were reached. A camcorder capable of recording videos 

with up to 50X magnifications recorded hydrogen release from the surface of samples 

within 60 seconds of what polarization curves indicated. SEM images from surface of 

samples confirm the localized pitting corrosion. For the second half of samples which went 

through the complete test, samples corroded until the potentiostat tool reached its 

predefined parameters. For all samples (except for sample A), a complete corrosion over 

the entire surface was observed in less than 5 minutes after the first signs of pitting 

corrosion occurred. This rapid growth of corrosion along with delamination of layers can 

be attributed to the galvanic corrosion between adjacent Al and Ti layers, which was 

facilitated by pin holes and pits generated on the top Al layer.  Such comprehensive 

corrosion in the form of layer delamination was similar to that reported in TiN/CrN 

multilayer by Nordin et al. [12]. EDS test was performed at the delaminated surfaces of 

specimen B and C right after the corrosion test. Additional EDS test was performed on the 

same location after removing the delaminated layers using a soft brush and compressed 

nitrogen. The results are shown in Fig. 4.8. Comparing the two EDS results reveals that 
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corrosion and the delamination does not engage all the layers in the coating. Five abundant 

elements detected in the coating by EDS were Al, Ti, Si, Cl, Na and Oxygen. Comparing 

the second EDS results with the first one indicates that, all five components do exist over 

the same spot, only with slightly smaller intensity in the second EDS scan. Figure 4.8 

indicates the EDS scans from a surface of sample C before and after removing the 

delamination. Full polarization curve of sample C (showed in Figure Fig. 4.9) indicates 

two steps of pitting corrosions in the anodic region. The first set of pitting defected top 

layers and eventually caused layers delamination by accelerating galvanic corrosion. The 

second set of pitting initiated beneath the delaminated layers and will engage the rest of 

intact layers. 

Based on Tafel analysis specimen A and B demonstrated the best corrosion resistance. 

Specimen B with bilayer thickness of 10.4 nm had a corrosion current density (icorr) of ~ 7.24 × 

10-9 (A/cm2) with an open circuit potential (Voc) of ~ - 330 mV. Specimen A with ~ 5 nm bilayer 

thickness showed a corrosion current density of ~ 0.61 × 10-9 (A/cm2) and open circuit potential 

of ~ -0.164 mV, suggesting an improvement in corrosion resistance by more than an orders of 

magnitude compared to pure Al. Sample A also demonstrated a much noble behavior through more 

positive Voc.  Creus et al. showed that Al/Cr multilayer with an overall thickness of ~ 7.9 μm, 

exhibit a corrosion current density of icorr ~ 0.2 × 10-6 (A/cm2) and Voc ~ - 610 mV[6]. Both samples 

demonstrate much better corrosion resistance and noble behavior compared to Al/Cr multilayers  

[6]. Sample A and B also demonstrated superior corrosion properties compared to an Al/Ti 

multilayer with much higher overall thickness. For example, Charrier et al. [14] showed that  Al/Ti 

multilayer with ~ 15 μm thickness resulted in a  corrosion current density of ~ 0.2 × 10-6 (A/cm2) 

and Voc ~ - 715 mV.  
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4.3.3 Effect of Layer Thickness and Interfaces on Corrosion Resistance 

Finally, we discuss the effect of layer thickness and total film thickness on the corrosion 

resistance of NMMs.  

 Increasing the bilayer and overall thickness will not improve the corrosion rate. This can 

be simply concluded by comparing the results from current study with Charrier et al.  work 

over a ~ 15 μm thick Al/Ti multilayer [14]. 

 Adding the number of interfaces is likely to decrease icorr and increase Voc. In a test of Al/Ti 

NMMs, Xie et al. compared corrosion properties of two multilayers with 5 and 25 bilayers. 

Overall thickness of coating remained the same at ~ 4.6 μm. Polarization data showed that 

icorr decreased from ~ 1.8 × 10-5 (A/cm2) to ~ 7.9 × 10-8 (A/cm2), while Ecorr increased from 

-0.98 V to -0.81 V [9]. In the current study, specimen A, B, C and D had 374, 156, 136 and 

60 layers respectively and the corrosion resistance was found to increase with the number 

of layers. Comparing the current study with those from Xie et al. and Charrier et al. 

suggests that increasing the overall number of layers (and consequently interfaces) favors 

an improvement in the corrosion properties. Adding more layers and hence more interfaces 

might assist blocking pores and defects in the coating, which will push the polarization 

curve toward more positive potentials. [6, 15] . 

 Prior research shows that for precipitate containing alloys, precipitates smaller than ~ 4 nm 

becomes ‘invisible’ during corrosion, i.e. these fine precipitates will not form micro-

galvanic coupling with the matrix [16], Thus the alloy behaves as if it were a chemically 

homogeneous alloy. In a very similar fashion, in the current study, when the individual 

layer thickness was below ~ 5 nm, an improved corrosion resistance was observed in the 

Al/Ti NMMs, as if the layer structure became invisible to corrosion. In this case, galvanic 
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coupling between adjacent Al and Ti layers, which contributes to the high corrosion rate in 

Al/Ti NMMs with larger layer thicknesses (samples B, C and D), was completely 

eliminated. Thus the present work suggests a novel way of enhancing corrosion resistance 

of NMMs via layer thickness control. In addition to enhanced mechanical and tribological 

properties at small layer thicknesses, these NMMs may be used as novel tribocorrosion 

resistant coatings for future applications in severe environment.  

4.4 Conclusions 

Corrosion resistance of four Al/Ti NMMs was examined through potentiodynamic 

corrosion test in simulated sea water. Corrosion starts in the form of pitting followed by galvanic 

corrosion between adjacent layers of NMMs with layer thickness above 2.5 nm. Samples A and 

B, which had the smallest individual layer thickness of 2.5 nm and 5.4 nm respectively and high 

amounts of interfaces demonstrated much better corrosion resistance compared to their 

counterparts (samples C and D). Based on the observations in the current study, the presence of 

large population of interfaces and the ultra-fine layer thickness in samples A and B could be the 

main reason for blocking the aggressive ions path through coating [10, 17]. Higher amount of 

interfaces and refined layer thickness, which were proven to be improving mechanical properties 

of NMMs by controlling dislocations [18, 19], will also act as a barrier to block pores and defects 

and ultimately enhance corrosion resistance.  The presented approach offers an opportunity to 

create novel NMMs with high specific strength, excellent tribological and corrosion resistance, 

which may find potential applications as tribocorrosion resistant coatings for metals in complex 

service conditions.  
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4.6 Tables and Figures 
 

Table 4.1 Summary of structure and mechanical properties of Al/Ti NMMs. 

 

 

 

Table 4.2 Polarization curves extracted data along with cavity depth extracted from AFM analysis.  
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Figure 4.1 Sample preparation steps prior to corrosion testing. a) Covering specimen surface using 

an adhesive tape to separate it from sealing materials. b) Applying sealing material over sample 

surface using a small brush. c) Removing the tape from sample surface after curing of sealing 

material for 24 hours. d) Adding more sealing materials around the target surface and waiting 

another 24 hours for sealing to dry. e) Using heat shrink material to exclude the surface of corrosion 

from electrodes connectors and applying M-Bond adhesive and sealing material several times. f) 

Test environment showing reference electrode, corrosion cell, sample and other components. 
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Figure 4.2 (a) and (b) low magnification TEM images from modulation structure of sample A and 

D respectively. Columnar grain boundaries are highlighted using yellow dash lines showing the 

through thickness grain size remains almost constant (i.e. there is no increase or decrease in grains 

size going from substrate to surface). (b) and (d) HR-TEM images of specimens A and D 

respectively.  
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Figure 4.3 Columnar grains diameter and arithmetic average of surface roughness (Ra) extracted 

from AFM height images by averaging 100 data points extracted from 5 × 5 μm2 scans. Monolithic 

aluminum and titanium specimens are also included for comparison. 
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Figure 4.4 GIXRD diffracted patterns for all Al/Ti NMMs.  
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Figure 4.5 Polarization curves for specimen A, B, C, D and monolithic Al, generated using Gamry 

Echem Analyst software.  
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Figure 4.6 On the left side a, b, c and d indicate SEM image from surface of sample A, B, C and 

D before potentiodynamic test. On the right aʹ, bʹ, cʹ and dʹ demonstrate the samples surface after 

potentiodynamic tests. 
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Figure 4.7 AFM images of Al/Ti NMMs. Line cross section profiles were used to measure the 

depths between surface nodules. Green arrows indicate the highest peaks, white (overlap of green 

and red) arrows demonstrate the deepest valleys and red arrows index the neutral level.  
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Figure 4.8 EDS analyses of sample C right after potentiodynamic test (left box) and after removing 

the delamination (right box). Both images are taken from the same location. 
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Figure 4.9 Polarization curve for sample C. 
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A.2 Copyright Permission for Figure 1.2 
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A.3 Copyright Permission for Figure 1.3 
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A.4 Copyright Permission for Previously Published Materials in Chapter 3 
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